Tech News

Tech Business News

  • Home
  • Technology
  • Business
  • News
    • Technology News
    • Local Tech News
    • World Tech News
    • General News
    • News Stories
  • Media Releases
    • Tech Media Releases
    • General Media Releases
  • Advertisers
    • Advertiser Content
    • Promoted Content
    • Sponsored Whitepapers
    • Advertising Options
  • Cyber
  • Reports
  • People
  • Science
  • Articles
    • Opinion
    • Digital Marketing
    • Guest Publishers
  • About
    • Tech Business News
    • News Contributions -Submit
    • Journalist Application
    • Contact Us
Reading: Artificial Intelligence May Improve Suicide Prevention In The Future
Share
Font ResizerAa
Tech Business NewsTech Business News
  • Home
  • Technology News
  • Business News
  • News Stories
  • General News
  • World News
  • Media Releases
Search
  • News
    • Technology News
    • Business News
    • Local News
    • News Stories
    • General News
    • World News
    • Global News
  • Media Releases
    • Tech Media Releases
    • General Press
  • Categories
    • Crypto News
    • Cyber
    • Digital Marketing
    • Education
    • Gadgets
    • Technology
    • Guest Publishers
    • IT Security
    • People In Technology
    • Reports
    • Science
    • Software
    • Stock Market
  • Promoted Content
    • Advertisers
    • Promoted
    • Sponsored Whitepapers
  • Contact & About
    • Contact Information
    • About Tech Business News
    • News Contributions & Submissions
Follow US
© 2022 Tech Business News- Australian Technology News. All Rights Reserved.
Tech Business News > Media Releases > Artificial Intelligence May Improve Suicide Prevention In The Future
Media Releases

Artificial Intelligence May Improve Suicide Prevention In The Future

Austech Media
Last updated: October 6, 2022 6:50 am
Austech Media
Share
SHARE

The loss of any life can be devastating, but the loss of a life from suicide is especially tragic

Around nine Australians take their own life each day, and it is the leading cause of death for Australians aged 15–44. Suicide attempts are more common, with some estimates stating that they occur up to 30 times as often as deaths.

“Suicide has large effects when it happens. It impacts many people and has far-reaching consequences for family, friends and communities,” says Karen Kusuma, a UNSW Sydney PhD candidate in psychiatry at the Black Dog Institute, who investigates suicide prevention in adolescents.

Ms Kusuma and a team of researchers from the Black Dog Institute and the Centre for Big Data Research in Health recently investigated the evidence base of machine learning models and their ability to predict future suicidal behaviours and thoughts. They evaluated the performance of 54 machine learning algorithms previously developed by researchers to predict suicide-related outcomes of ideation, attempt and death.

The meta-analysis, published in the Journal of Psychiatric Research, found machine learning models outperformed traditional risk prediction models in predicting suicide-related outcomes, which have traditionally performed poorly.

“Overall, the findings show there is a preliminary but compelling evidence base that machine learning can be used to predict future suicide-related outcomes with very good performance,” Ms Kusuma says.

Traditional suicide risk assessment models

Identifying individuals at risk of suicide is essential for preventing and managing suicidal behaviours. However, risk prediction is difficult.

In emergency departments (EDs), risk assessment tools such as questionnaires and rating scales are commonly used by clinicians to identify patients at elevated risk of suicide. However, evidence suggests they are ineffective in accurately predicting suicide risk in practice.

“While there are some common factors shown to be associated with suicide attempts, what the risks look like for one person may look very different in another,” Ms Kusuma says. “But suicide is complex, with many dynamic factors that make it difficult to assess a risk profile using this assessment process.”

A post-mortem analysis of people who died by suicide in Queensland found, of those who received a formal suicide risk assessment, 75 per cent were classified as low risk, and none was classified as high risk. Previous research examining the past 50 years of quantitative suicide risk prediction models also found they were only slightly better than chance in predicting future suicide risk.

“Suicide is a leading cause of years of life lost in many parts of the world, including Australia. But the way suicide risk assessment is done hasn’t developed recently, and we haven’t seen substantial decreases in suicide deaths. In some years, we’ve seen increases,” Ms Kusuma says.

Despite the shortage of evidence in favour of traditional suicide risk assessments, their administration remains a standard practice in healthcare settings to determine a patient’s level of care and support. Those identified as having a high risk typically receive the highest level of care, while those identified as low risk are discharged.

“Using this approach, unfortunately, the high-level interventions aren’t being given to the people who really need help. So we must look to reform the process and explore ways we can improve suicide prevention,” Ms Kusuma says.

Machine learning suicide screening

Ms Kusuma says there is a need for more innovation in suicidology and a re-evaluation of standard suicide risk prediction models. Efforts to improve risk prediction have led to her research using artificial intelligence (AI) to develop suicide risk algorithms.

“Having AI that could take in a lot more data than a clinician would be able to better recognise which patterns are associated with suicide risk,” Ms Kusuma says.

In the meta-analysis study, machine learning models outperformed the benchmarks set previously by traditional clinical, theoretical and statistical suicide risk prediction models. They correctly predicted 66 per cent of people who would experience a suicide outcome and correctly predicted 87 per cent of people who would not experience a suicide outcome.

“Machine learning models can predict suicide deaths well relative to traditional prediction models and could become an efficient and effective alternative to conventional risk assessments,” Ms Kusuma says.

The strict assumptions of traditional statistical models do not bind machine learning models. Instead, they can be flexibly applied to large datasets to model complex relationships between many risk factors and suicidal outcomes. They can also incorporate responsive data sources, including social media, to identify peaks of suicide risk and flag times where interventions are most needed.

“Over time, machine learning models could be configured to take in more complex and larger data to better identify patterns associated with suicide risk,” Ms Kusuma says.

The use of machine learning algorithms to predict suicide-related outcomes is still an emerging research area, with 80 per cent of the identified studies published in the past five years. Ms Kusuma says future research will also help address the risk of aggregation bias found in algorithmic models to date.

“More research is necessary to improve and validate these algorithms, which will then help progress the application of machine learning in suicidology,” Ms Kusuma says. “While we’re still a way off implementation in a clinical setting, research suggests this is a promising avenue for improving suicide risk screening accuracy in the future.”

By Austech Media
Austech Media is Australian press release distribution and publishing organisation dedicated to the technology industry. Incorporating distribution of technology news and events
Previous Article Medical Technology 2022 Top 10 Medical Technologies 2022: Innovations In The Medical Field
Next Article Voice screening App rapid results Parkinson’s severe COVID New Voice Screening App Delivers Rapid Results For Parkinson’s And Severe COVID Patients
Leave a comment

Leave a Reply Cancel reply

You must be logged in to post a comment.

Artificial intelligence suicide prevention

Tech Articles

Bad Bot Traffic Levels Rise For The Fifth Consecutive Year - 2024

Bad Bot Traffic Levels Rise For The Fifth Consecutive Year

For the fifth consecutive year in a row, bad bot…

September 21, 2024
Remote Work Trust & Rapport Team Members

How To Build Trust & Rapport With Remote Team Members

Building trust with a remote team members can feel like…

November 23, 2024
IT managed services Australia

The Rise Of Managed IT Services In Australia

As we stand at the crossroads of technological advancement and…

October 14, 2024

Recent News

Awards announced 2022
Media Releases

Appian Announces 2022 APJ Partner Award Winners

4 Min Read
Tech News - Cloud Migration Service Cut-Off Deadlines
Media Releases

Service Cut-Off Deadlines Push Cloud Migration to Top of the Agenda

3 Min Read
Avast Logo Tech News
Media Releases

Avast’s Online Protection and Secure Browser Products Win Latest Anti-Phishing Comparison Test

3 Min Read
Seez Raises $4.2 Million - Seez CEO Tarek Kabrit
Media Releases

Seez Raises $4.2 Million In Funding To Fast-Track US Expansion Strategy

2 Min Read
Tech News

Tech Business News

Stay up to date with the latest technology & business news trends from Australia and the around the world.

Technology News reports and whitepaper publishing services are available along with media and advertising options

Our Australian technology news includes People, Business, Science, World News, Local News, Guest publishers, IT News & Tech News Australia | Tech News was established in 2019

About

About Us 
Contact Us 
Privacy Policy
Copyright Policy
Terms & Conditions

December, 10, 2024

Contact

Contact Information.
Melbourne, Australia

Werribee 3030

Phone: +61 431401041

Hours : Monday to Friday, 9am 530-pm.


Tech News

© Copyright Tech Business News 

Latest Australian Tech News – 2024

Welcome Back!

Sign in to your account